
 
Journal of KONES Powertrain and Transport, Vol. 13, No. 2  

 
 
 

AXIOMATIC FORMULATION  
OF THERMODYNAMICS IDEAL GAS LAWS 

 
Wiesław Grzesikiewicz 

 
Warsaw University of Technology, Institute of Vehicles 

Narbutta Street 84, 02-524 Warsaw, Poland 
tel./fax: +48 22 849 03 03 

e-mail: IPPW@simr.pw.edu.pl 
 

Andrzej Wakulicz 
 

Polish Academy of Sciences, Institute of Mathematics 
Śniadeckich Street 8, 00-956 Warsaw, Poland 
tel.+48 22 522 81 00, fax: +48 22 629 39 97 

e-mail: im@impan.gov.pl 
 

Abstract 

The relationships between physical quantities determining thermodynamic state of an ideal gas are analysed in the 
paper. It will be proved that such relationships can be obtained based on convex analysis of the formula describing 
specific energy of the gas. This formula is expressed as a functional with specific volume and specific entropy being its 
constrains. The resulting constitutive equations of ideal gas, determining pressure and temperature as a function of 
entropy and specific volume,  are given. It will be proved that the equation of the ideal gas formulated by Clapeyron, 
can be easy obtain from the constitutive equations, eliminating the variable describing entropy. Moreover, it will be 
shown that the functional of specific energy of ideal gas  is convex. Because of this mathematical property of the 
functional, Legendre transform is used in order to determine three conjugated functionals, i.e. enthalpy, free enthalpy 
and free energy. The method of description of thermodynamic relationships to be introduced herein, differs from well-
known classic handbook’s presentations. Moreover, it permits a better understanding of the structure of 
thermodynamics equations.  
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1.  Introduction 
 

We analyse the relationships between physical quantities determining thermodynamic state of 
an ideal gas. The primary quantity describing the state of the gas, is the mass energy density to be 
accumulated in. It is called the specific energy and is defined as an amount of energy per unit 
mass. We take into account energetic transformation of a one-kilogram gas sample, filling a 
container with changing volume. We assume that the state of the gas is homogeneous in every 
point inside the container.  

Thermodynamic state of the gas is described using four physical quantities given below: 

v – specific volume ⎥
⎦

⎤
⎢
⎣

⎡
kg
m3

,  p – pressure [ ]Pa ,  s – specific entropy ⎥
⎦

⎤
⎢
⎣

⎡
Kkg

J , T – temperature [ ]K . 

The equation of an ideal gas, formulated by Clapeyron in 1834, determines a relationship 
between the three above introduced quantities and is as follows 

 
 

TRvp = , 
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where ⎥
⎦

⎤
⎢
⎣

⎡
Kkg

JR  denotes the universal gas constant. 

The gas constant R is related to another parameters, 
characterizing the properties of ideal gas [5], [6] 

 
 

 

 
v,s   vc    – specific heat under constant volume conditions, 

pc    – specific heat under constant pressure conditions, gas 

 
v

p

c
c

κ =   – adiabatic fraction , , 1>κ  
Fig. 1. Ideal gas container 

 
( )1−=−= κcccR vvp . 

 
In the paper we will demonstrate that the relationships between the quantities determining 

thermodynamic state of ideal gas, can be obtained based on the convex analysis of formula 
describing specific energy of the gas. 

Such a presentation of laws of thermodynamics, differs from well-known classic formulations 
we can find in handbooks. In our opinion, the method to be proposed herein, serves for better 
understanding of the structure of thermodynamics relations. In many cases it also facilitates the 
process of formulation of thermodynamics problems. Moreover, the method we propose, is an 
example of application of the universal physical system laws to the analysis of thermodynamics 
system. 

 
 2.  Specific Energy of Ideal Gas 

 
We treat the energy as a physical quantity, which can be perceived, based on experiments, in 

various forms, via various related physical quantities. Le we assume that in the set of quantities, 
related to certain form of energy, we can separate a primary quantity from which any quantity can 
be derived. The results of well-known experiments as well as observations of physical systems, 
prove this assumption and indicate that the amount of energy accumulated in a separate physical 
system can be evaluated based on the measurement of the primary physical quantity. 

In the case of the ideal gas we analyse the two forms of energy. It is mechanical potential 
(strain) energy and heat energy. The primary quantities related to these forms of energy are 
specific volume (v) and specific entropy (s). 

Within the classical thermodynamics, the problems to be analysed concern the processes with 
relatively small velocities of gas particles. In [5], this velocity range was given of 40 m/s. For this 
reason, the model of an ideal gas can be suited because there is no need, the kinetic energy to be 
taken into account . 

The phenomenon of energy accumulation is described using a function determining an amount 
of energy with respect to the primary physical quantities. This function, called the energy 
functional, determines changes in amount of energy to be accumulated in the system with respect 
to reference state. 

The specific energy accumulated in ideal gas is described by the functional , which has 
the following form 

( sv,E )
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where: 

oE    – gas energy in reference state, 
( oo sv , )   – specific volume and specific entropy in reference state, 

vc,κ    – parameters of ideal gas. 
 

The above presented expression, introduced in a similar form in [7], constitutes a synthesis of 
description of thermodynamics relationships, i.e. the relationships between physical quantities 
determining the ideal gas state. It means that after mathematical manipulation of this formula, we 
can obtain the constitutive relations. 

The derivative of the energy functional, determines a physical quantity called reciprocal 
quantity or energetic conjugated quantity with respect to the primary quantity. In the case of 
energy functional of ideal gas, reciprocal quantities are as follows:  

Iσ   – one-dimensional stress determining volumetric (isotropic) stress state in the gas,    
T   – temperature. 
The relationships between reciprocal quantities ( )TI ,σ  and primary quantities  result 

from the following equations 
( sv, )

 

( sv
vI ,E
∂
∂=σ ),          ( )sv

s
T ,E

∂
∂= .                                 (2) 

 
 The values of Iσ  obtained from the above expression are negative. Because of this we will use 
an opposite-sign quantity called pressure 
 

Ip σ−=: ,        ( )sv
v

p ,E
∂
∂−= .                             (3) 

 
 Differentiating the energy functional we obtain the following constitutive relations of the ideal 
gas 

( )
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⎛=⎟
⎠
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⎜
⎝

⎛−
=

κκκ
                         (4) 

  
Let we note, that eliminating the quantity describing entropy s, gives the equation of state of 

the ideal gas formulated by Clapeyron 
TRvp = .                                                                 (5) 

 
 Based on (4) we can also obtain relationships between , occurring in reference state. 
Substituting  and  into (4), gives  

ooo ETp ,,

ovv = oss =

 
( ) .,1

v

o
o

o

o
o c

ET
v

Ep =
−

=
κ                                (6) 
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 Taking into account equations (6), we can obtain new form of relations (4), to be as follows 
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                         (7) 

 
Using (42) and (62) we may obtain, from equation (1), the following well-known formula for 

evaluation of gas energy based on temperature value 
 

( ) ( )ov TTcsv −=,E       if       ( sv
s

T ,E
∂

)∂= .                                (8) 

 
The important mathematical property of a functional is convexity, resulting that the matrix of 

its second derivative is positive definite. In the case of the energy functional, given by equation 
(1), this matrix has a form   
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It can be proved that the above matrix is positive definite for every  and  . Thus, the 

energy functional of ideal gas is convex with respect to both variables. 
0>s 0>v

 
3.  Conjugated Functionals 
 

In the case of convex functional, it is possible to assign a conjugated functional using Legendre 
transform, given by 

 
( ) ( ){ }xFxxxF

x
−= ∗∗∗ sup: ,                         (10) 

where: 
   – primary and conjugated variables, ∗xx,
  – primary and conjugated functionals. ∗FF ,

We assign to the energy functional of the ideal gas E, three conjugated functionals 
 

( ) ( ){ }svTspvTp
sv

,sup:,
,

EE −+−=∗ ,                        (11) 

( ) ( ){ }svpvsp
v

,sup:,1 EE −−=∗ ,                              (12) 

( ) ( ){ }svTsTv
s

,sup:,2 EE −=∗ .                                (13) 

 
 The above presented funtionals are used in thermodynamics but with an opposite-sign-form 
(see [1], [3]), to be as follows 

– the functional G called free entalpy or Gibs function 
 

( ) ( )TpTpG ,, ∗−= E ,                            (14) 
– the functional H called entalpy 
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           ( ) ( )spspH ,, 1

∗−= E ,                         (15) 
 

– the functional F called free energy or Helmholtz function 
 

( ) ( )TvTvF ,, 2
∗−= E .                            (16) 

 
 Let we use in expressions (11), (12) and (13), the formula describing the gas energy ( )sv,E  
from (1). Thus, we obtain 
 

( ) ( )
p
pRT

T
TTcTcsETp o

o
ppoo lnln, ++−+=∗E ,                        (17) 

 

( )
κ

κ
κ

1

1 1
,

⎥
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−
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−

∗ v
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ss
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p
ppvEspE ,                               (18) 

 

( ) ( )
oo

vvoo v
vRT

T
TTcTcsETv lnln,2 ++−+=∗E .                    (19) 

 
The functional ∗E  is convex with respect to both variables while  and  are convex with 

respect to conjugated variables  and non-convex with respect to primary variables . 

∗
1E ∗

2E
( Tp, ) ( )sv,

Using these functionals it is possible to formulate the following relationships between 
thermodynamic quantities 

 
( )
p

TpEv
∂

∂−=
∗ ,  ,          ( )

T
TpEs

∂
∂=

∗ ,  ,                       (20a) 

( )
p

spEv
∂

∂
−=

∗ ,1  ,          ( )
s

spET
∂

∂
−=

∗ ,1  ,                       (20b) 

( )
v

TvEp
∂

∂
=

∗ ,2  ,            ( )
T

TvEs
∂

∂
=

∗ ,2  .                       (20c) 

 
Let we note that the equations (20a) describe an inverse form of relations given by (2). 

Differentiating (20a) we obtain  
 

,lnln,
p
p

R
T
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p
RTv o

o
po ++==                              (21) 

while using (20b) gives 
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4.  Thermodynamic Equilibrium 
 
 Thermodynamic system and its surroundings are considered 
to be in a state of equilibrium when pressure and temperature of 
both are the same.  

In Fig. 2, we’ve shown a container with an ideal gas put 
within a surroundings having the pressure  and the 
temperature  to be constant. The static problem of the system, 
consists in evaluation of specific volume  and entropy  of 
the gas, when its pressure and temperature within container are 
of the same value as in surroundings .  

zp

zT

zv zs

zz Tp ,
This problem could be solved using various methods, for 

example we can use equations (21). The same result will be 
obtained if we formulate the static problem in an optimization 
form. In such a case we sould determine the pair ( )zz sv ,  
minimizing the fonctional 

 
( ) ( ) sTvpsvsv zzc −+= ,:, EE .                                                (23a) 

Thus, we can write 
 

( ) ( )svsv csvzz ,minarg,
,

E= ,                                                  (23b) 

 
where the functional E is given by (1). 
 The solution of the problem (23) determines the relationships between (  and  to 
be given by (2) and (3). The explicit form of these relations was expressed by (4) or (7). Thus, we 
can evaluate the pair ( . Having evaluated specific volume and specific entropy 

)

)

zz sv , ( )zz Tp ,

zz sv , ( )zz sv , , 
determining the state of thermodynamic equilibrium, we can determine an amount of energy to be 
taken by gas from surroundings, using equation (1). It should be emphasized that the static 
problem does not describe the process of gas transformation from initial state  to the state 
of equilibrium . 

( oo sv , )

)

( )zz sv ,
 

5.  Thermodynamic Transformations 
 

Thermodynamic transformation is a process consisting in gas state change from initial sate 
,  to fianal state ( ) , ( )11, sv ( 11,Tp 22 , sv ( )22 ,Tp . Usually, so called quasistatic problems are 

considered (see [1], [2]). We assume that for quasistatic problem, the state of the gas changes 
slowly. Thus, the state of the gas can be even out within the container in such a way, the 
thermodynamic equilibrium to be satisfied in every moment. This assumption makes possible to 
use the ideal gas model in analysis of the above described processes called reversible processes. 

Let we analyse a reversible thermodynamic transformation from the state ( ) ,  to 
the ( ) , ( .  The type of transformation depends on the path, the system follows from the 
initial state to the final one.  This path is determined by the curve l  corresponding to arcs  and 

, in coordinate systems to be shown in Fig. 3. 

11, sv ( )11,Tp

22 , sv )22 ,Tp
vpl

sTl

 
 

v,s   
( p,T )   

gas   

zz T,  surroundings   p

 
Fig. 2. Gas container and 

 its surroundings 
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Fig. 3. Termodynamic process chart 
 
 

 During the transformation process, the energy moves from surroundings to the system. The 
energy increase is determined by a differential, calculated using equations (1), (2) and (3) 
 

s
T

v
psTvp

∂
∂=

∂
∂−=+−= EEE ,,ddd ,                         (24) 

 
Thus, we obtain the description of the transformation via the following contour integral  
 

( ) ( ) s
s

v
v

svsv dd ∫∫ ∂
∂+

∂
∂=−

l
)

l
)

EEEE 1122 ,, .                        (25) 

 
 The above equation can be expressed as an energy balance 
 

( ) ( ) ( )ll 1212221112 ,;, QLsvsvE Δ+Δ=Δ ,                      (26a) 
where the component 

( ) ( ) ( )1122221112 ,,,;, svsvsvsvE EE −=Δ ,                       (26b) 
 

determines energy increase in the system. Moreover, the elements depending on the path  l
 

( ) ( ) s
s

Qv
v

L dd ∫∫ ∂
∂=Δ

∂
∂=Δ

l
)

l
)

ll
EE :,: 1212  

 
determine an amount of energy in mechanical form 12LΔ  and in heat form  to be transferred 
to the system during transformation. The 

12QΔ

12LΔ  is usually called the work and the  - the heat 
delivered to the system [4]. 

12QΔ

vpl  
1 

p 

12

2  1p
1T

sTl

 2p 2T
 12lΔ−

v s 1v  2v 1s 2s  

QΔ

2
 1s

 l
1  2s

 2v1v v
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 The above presented equations show that the increase of energy 12EΔ  is determined only by 
limit states of the system while the work 12LΔ  and the heat 12QΔ  transferred to the system during 
transformation, depend on the curve describing the path joining these limit states. 
 
6.  Conclusions 
 
 It was demonstrated in the paper, how to formulate well-known thermodynamic relations using 
the energetic description of physical systems. In comparison with classical methods, the procedure 
to be proposed herein is distinct by the fact of its compact mathematical description. We were 
analysing only quasistatic processes. Taking into account additional variables describing kinetic 
energy of the gas, we can obtain functionals suited for dynamic processes analysis. 
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